STAR Public
  • Space Technologies and Rocketry
  • Quick Links
  • Member Info
    • Membership Requirements
    • Elections
  • Current Projects
    • ALULA: First Leap
      • Project Objectives
      • High-Level System Parameters
      • Propulsion
      • Avionics
      • Airframe
      • Recovery
    • Caldera: IREC 2024
      • Airframe
      • Avionics
      • Airbrakes
      • Recovery
      • Staging
      • KELSE-Y (Payload)
  • Previous Projects
    • CalVistor: IREC 2023
      • Recovery (CalVistor)
      • Airframe (CalVistor)
      • Airbrakes (CalVistor)
      • Payload (CalVistor)
    • ELLIE
      • ELLIE Overview
      • Timeline
      • Physical System
      • Electrical and Software
      • Ongoing Research
    • MINDI
      • Airframe
      • Recovery
    • PinkBeary
      • Altimeter Wiring Update
      • Airframe Diameter
      • Fin Sizing
      • Pyro Bolts
      • Electronics
    • CAS
      • CAS Overview
      • Core Module
      • Radio Module
      • Pyro Module
      • Prop Module
      • CAS Core Revised
      • CAS Radio Revised
    • DAVE
      • Summary of DAVE
      • FAQ's
      • DAVE Blog
    • Bear Force One: IREC 2020/2021
      • Airframe
      • Recovery
        • Parachute Harness
        • Avionics Bay
          • Avionics Bay Glossary
          • Avionics Bay Assembly
        • Black Powder Holders
        • Payload
          • Payload Subsystem Report
          • IRIS
            • Peripherals Diagram
            • Pinout Diagram
            • Power Flow Diagram
          • MFC (2020)
          • Stabilization
          • Structures
          • Cameras
          • Muons - Archived
          • IRIS Legacy - Archived
    • Arctos
    • AirBears
  • Frequently Asked Questions
  • Tutorials
    • Media
      • How to make a decent video
    • RFS Safety Training
    • Submitting Reimbursements
    • Software Setup
      • SolidWorks Installation
      • VMware/Boot Camp setup
      • [In-Progress] SolidWorks PDM Setup
      • ANSYS Installation and Setup
      • Solidworks Assemblies Basics
      • OpenRocket Installation
      • Deprecated Software
        • [deprecated] Getting Started With GrabCAD Workbench
        • [deprecated] Using GrabCAD Workbench in SolidWorks
        • [deprecated] Connecting to CalSTAR's Server
        • [deprecated] Installing and Licensing Converge CFD
    • General Tutorials
      • How to Use SolidWorks Templates
      • [In Progress] Digikey Ordering Guide
      • SolidWorks Training Session
      • SolidWorks Training Tutorials
    • Enery Systems
    • Manufacturing
      • Material Properties and Uses
      • 3D Printing (FDM)
      • Laser Cutting
      • FabLight: Metal Laser Cutter
      • Milling
        • Othermill
        • [Empty] Manual Mills
      • Tolerancing
      • Fasteners
      • Suppliers
      • Composite Materials and Best Practices
      • 8020 Extrusions
    • Airframe
      • Airframe Components
      • Tube Attachement
      • OpenRocket
      • Tube Winding
      • Sizing Fins
      • Attaching Fins
      • Rail Buttons
      • Motor Retention
      • Painting Rockets
    • Avionics
      • KiCad
      • Git
      • Project Management
      • Firmware Development Environment
      • Ground Station Software
      • Intro to Embedded C Programming
      • Schematic and Layout Review
      • Board Design Reference
      • Using Lab Equipment
      • Reflow Oven
      • Soldering
      • Debugging Tips/Testing
      • Ham Radio Basics
      • Component Selection
      • High Temperature Batteries
    • Outreach Activities
      • Straw Rocketry
      • Spacecraft Structures
      • Alka Seltzer Rockets
      • Paper Airplane Launcher
      • Coding Workshop
    • Operations
      • SolidWorks file conventions
      • Style Guidelines
      • LaTeX
    • Payload
    • Propulsion
      • Feed System Types
      • Rocket Propulsion Analysis Tutorial
      • Ignition Devices
      • Creating a Piping and Instrumentation Diagram P&ID
      • Pipes, Fittings, and Components
      • Injectors
    • Recovery
      • Parachute Sizing
      • Avionics Sled
      • [in progress] Altimeters
      • Wire Design and Routing
    • Simulations
      • FEA Simulation Tutorial using ANSYS
      • Getting Started with CONVERGE (2.4)
      • [Empty] Simulation Methods
      • Mathematical Models
      • SimScale
        • SimScale 3D CFD
      • Using ANSYS
      • ANSYS 19.2 2D CFD Tutorial
      • ANSYS 19.2 3D CFD Tutorial
    • Administrative
      • Azure Server
    • Page 1
  • Reference
    • Reference
    • Glossaries
      • Propulsion
      • Common Acronyms and Definitions
    • Brand Guidelines
    • Legal
    • High Power Rocketry (HPR)
      • NASA HPR Reference
      • L1 and L2 Certification Tips & Tricks
      • HPR Kits
      • HPR Design
      • HPR Suppliers
      • STAR HPR Certification
    • Ham Operators
    • X-Winder Update Log
    • Safety
      • Materials
      • Tools
      • Electrical
      • Range Safety
  • Testing
    • Test Forms
    • Damage Report Forms
    • Airframe Tests
    • Recovery Tests
      • Ground Ejection Test
  • Onboarding
    • Intro Projects
      • Airframe
      • Avionics
        • PCB Design Mini-Project
      • Operations
      • Payload
      • Propulsion
      • Outreach
      • Recovery
      • Media
      • Safety
      • Simulations
      • Old Intro Projects
        • Payload 2020 Intro Project
        • Propulsion Fall 2019
        • Avionics 2018
        • Recovery 2018
        • Avionics (new intro project Fall 2021)
  • Project Management
  • History of the Team
    • Early Years
    • Executive History
    • Launch History
      • 2022-12-03 MINDI First Flight
      • 2022-09-17 Pinkbeary First Flight
      • 2019-11-16 AirBears First Flight
      • 2018-03-24 Final flight for Arktos
      • 2017-04-08 Competition Launch, NASA SL 2017
      • 2017-03-25 FRR Re-Re-Flight, NASA SL 2017
      • 2017-03-12 FRR Re-Flight, NASA SL 2017
      • 2017-03-04 FRR Flight, NASA SL 2017
      • 2016-12-04 CDR Subscale Flight, NASA SL 2017
    • Fleet
  • How to use GitBook
Powered by GitBook
On this page
  • WORK IN PROGRESS
  • Overview
  • Types of Injectors
  • Pintle
  • Showerhead
  • Impinging
  • Coaxial Swirl
  • Injector Manufacturing and Assembly
  • More Resources
Export as PDF
  1. Tutorials
  2. Propulsion

Injectors

General description of injectors, types of injectors, and injector manufacturing.

PreviousPipes, Fittings, and ComponentsNextRecovery

Last updated 4 years ago

WORK IN PROGRESS

Overview

Injectors are needed to spray the bipropellants (i.e. fuel and oxidizer) into the combustion chamber in a way that controls the atomization, combustion rate, and combustion efficiency of a liquid engine. Injectors are a vital component of a liquid rocket engine that will affect how efficiently the energy of fuel is converted into the needed thrust for a rocket. There are a variety of injectors to choose from. When designing an injector, some factors to consider are the bipropellants used, engine application, viability, etc.

Types of Injectors

Pintle

A pintle injector consists of two concentric tubes and a pintle. The cylindrical tubes are responsible for carrying the propellants to the combustion chamber. Generally fuel will go through the inner tube while oxidizer goes through the outer tube. The pintle is a protrusion at the end, which allows the fuel carried on the inner tube to deflect at a certain angle. The fuels will meet and mix at the impinging point and proceed to combust. By varying the size of the annular and center gaps that the fuel passes through, this allows for throttling of the engine and controlling of the flow into the combustion chamber.

Advantages

A properly implemented pintle injector can achieve combustion efficiency adequate for liquid engines (96-99%). The design is relatively simple and has proven dependability. Performance can be easily optimized by varying the gap sizes. It works in engines that have to be restarted. Overall, this injector is a simple, adjustable, and high performance option.

Disadvantages

Pintle injectors only work well for liquid and gelled propellants. Thermal stress is more concentrated in the certain parts of the combustion chamber which can lead to burn through. Another disadvantage is that there are no correlations for level of mixing and spray size.

Showerhead

Similar to an actual showerhead, the propellants are fed in a straight path into the combustion chamber where they will then atomize and combust. The propellants are sprayed through holes that would maximize atomization.

Advantages

This is the simplest option being relatively easy to make and implement such as by repurposing a commercial showerhead and integrating it into the engine plumbing.

Disadvantages

Mixing is dependent on the turbulence of the propellants entering the combustion chamber. Otherwise, the propellants will go straight in and have poor mixing. In general, the combustion efficiency of a showerhead injector will be low compared to other options making it viable for experimental, non flying engines.

Impinging

Propellants are fed into the combustion chamber at certain angles. To achieve this, many holes are drilled into the face of the combustion chamber. The fuel and oxidizer manifolds can be spaced in different orientations to vary where and how much mixing occurs. Some stream patterns include doublet, triplet, and self-impinging stream patterns.

Advantages

If done correctly, this can achieve strong combustion efficiency and is scalable depending on the size of the combustion chamber.

Disadvantages

This design can be quite complicated to drill sets of holes correctly accounting for entry angles, fluid velocity, and mass flow rate. Atomization efficiency decreases at high entry velocities because droplets will scatter in different directions. The degree of precision and equipment needed for this to be viable is most likely beyond the budget of the club unless a cheaper solution is found.

Coaxial Swirl

As suggested by the name, coaxial swirl injectors consist of coaxial tubes that will feed the bipropellant into a mixing chamber through tangential inlet ports. The oxidizer flows into a swirling chamber at an angle such that it will swirl and then spray out into the combustion chamber to thoroughly atomize. The fuel is fed directly into the combustion chamber where it will atomize with the oxidizer.

Advantages

In theory, can achieve the highest combustion efficiency and thus the highest performance. The spray pattern is similar to a pintle injector but without the need for a pintle to deflect the fuel due to its angular momentum.

Disadvantages

The variables involved in swirling such as the speed and the angle at which the swirling oxidizer is injected can be more difficult to optimize for this injector.

Injector Manufacturing and Assembly

More Resources

Rocket Propulsion Elements
Swirl Effects on Coaxial Injector Atomization
NASA Technical Report on Liquid Rocket Injectors
NSS on Pintle Injectors
Pintle Injector used in the Falcon 9
Scott Manley on Injectors
Design and Analysis of a Fuel Injector in a Liquid Rocket Engine